Main Page: Difference between revisions

From BanghamLab
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
__NOTOC__
__NOTOC__
<span style="color: DarkSlateGray"><font size="+1"><center>'''The Bangham Lab'''</center></font><span>
<span style="color: DarkSlateGray"><font size="+1"><center>'''The Bangham Lab'''</center></font><span>
=<span style="color: DarkGreen">Computational Biology</span>=
=<span style="color: DarkGreen">Computational Biology=
<span style="color: DarkGreen"><font size="+1">The aim </font><span>is to understand how patterns of gene activity in biological organs influence the developing shape. </span><p></p><p></p>
{|  border="1" cellpadding="5" cellspacing="3"  style="background-color: #000000;"
{|  border="1" cellpadding="5" cellspacing="3"  style="background-color: #000000;"
|  <!-- column1-->
|  <!-- column1-->
<sgallery width="160" height="280" showarrows="false" showcarousel="false" showinfopane="false" timed="true" delay="2000">
<sgallery width="160" height="200" showarrows="false" showcarousel="false" showinfopane="false" timed="true" delay="2000">
LabelledCropped_GPT_Snapdragon_2010-000250-0001.png
LabelledCropped_GPT_Snapdragon_2010-000250-0001.png
LabelledCropped_GPT_Snapdragon_2010-000340-0001.png
LabelledCropped_GPT_Snapdragon_2010-000340-0001.png
Line 18: Line 19:
<center> [[Software#Toolboxes for research|<span style="color:GreenYellow;">More on Snapdragon model</span>]] </center>
<center> [[Software#Toolboxes for research|<span style="color:GreenYellow;">More on Snapdragon model</span>]] </center>
|| <!-- column2-->
|| <!-- column2-->
=<span style="color: Gold">Genes and growing shapes<span>=  
=<span style="color: Gold">Genes and growing shapes</span>=  
<span style="color: LemonChiffon">The aim is to understand how patterns of gene activity in biological organs influence the developing shape. A key notion is that genes may regulate growth direction independently of growth rate. We formalised our ideas in the Growing Polarised Tissue Framework (ref). To make it easy to develop ideas on the relationship between growth and form we implemented a software package: ''GFtbox''. Using ''GFtbox'' one can start with a simple sheet of tissue (the canvas), lay out experimentally observed, or hypothesised, patterns of regulator activity and then grow the canvas in 3D. The final shape can be compared quantitatively with it's biological counterpart - so testing the hypotheses.</span><p>
* <span style="color: LemonChiffon">Observed: patterns of gene activity regulate tissue growth.</span>
* <span style="color: LemonChiffon">Hypothesis: gene activity independently regulates direction of growth.</span>
* <span style="color: LemonChiffon">Formalised in the Growing Polarised Tissue Framework (ref). </span>
* <span style="color: LemonChiffon">Implemented in ''GFtbox'' to make it easy to develop ideas on growth and form.</span>
* <span style="color: LemonChiffon">Start with a sheet of tissue (the canvas), add observed, or hypothetical patterns of activity. </span>
* <span style="color: LemonChiffon">Grow the canvas in 3D. </span>
* <span style="color: LemonChiffon">Compare with observed data quantitatively </span><p>
<center> [[Software#Toolboxes for research|<span style="color:GreenYellow;">Downloads and more details on ''GFtbox''</span>]] </center>
<center> [[Software#Toolboxes for research|<span style="color:GreenYellow;">Downloads and more details on ''GFtbox''</span>]] </center>
||  <!-- column3-->
||  <!-- column3-->
<sgallery width="160" height="280"  showarrows="false" showcarousel="false" showinfopane="false" timed="true" delay="3000">
<sgallery width="160" height="200"  showarrows="false" showcarousel="false" showinfopane="false" timed="true" delay="3000">
LabelledCropped GPT Snapdragon 2010-000570-0003 double.png
LabelledCropped GPT Snapdragon 2010-000570-0003 double.png
LabelledCropped GPT Snapdragon 2010-000570-0002 triple.png
LabelledCropped GPT Snapdragon 2010-000570-0002 triple.png

Revision as of 10:25, 4 May 2011

The Bangham Lab

Computational Biology

The aim is to understand how patterns of gene activity in biological organs influence the developing shape.

<sgallery width="160" height="200" showarrows="false" showcarousel="false" showinfopane="false" timed="true" delay="2000"> LabelledCropped_GPT_Snapdragon_2010-000250-0001.png LabelledCropped_GPT_Snapdragon_2010-000340-0001.png LabelledCropped_GPT_Snapdragon_2010-000490-0001.png LabelledCropped_GPT_Snapdragon_2010-000570-0002.png LabelledCropped_GPT_Snapdragon_2010-000570-0003.png LabelledCropped_GPT_Snapdragon_2010-000570-0004.png LabelledCropped_GPT_Snapdragon_2010-000570-0005.png LabelledCropped_GPT_Snapdragon_2010-000570-0007.png LabelledCropped_GPT_Snapdragon_2010-000570-0006.png LabelledCropped_GPT_Snapdragon_2010-000570-0001.png </sgallery>

More on Snapdragon model

Genes and growing shapes

  • Observed: patterns of gene activity regulate tissue growth.
  • Hypothesis: gene activity independently regulates direction of growth.
  • Formalised in the Growing Polarised Tissue Framework (ref).
  • Implemented in GFtbox to make it easy to develop ideas on growth and form.
  • Start with a sheet of tissue (the canvas), add observed, or hypothetical patterns of activity.
  • Grow the canvas in 3D.
  • Compare with observed data quantitatively

Downloads and more details on GFtbox

<sgallery width="160" height="200" showarrows="false" showcarousel="false" showinfopane="false" timed="true" delay="3000"> LabelledCropped GPT Snapdragon 2010-000570-0003 double.png LabelledCropped GPT Snapdragon 2010-000570-0002 triple.png LabelledCropped GPT Snapdragon 2010-000570-0001-Wildtype.png </sgallery>

More on testing models

<sgallery width="160" height="280" showarrows="false" showcarousel="false" showinfopane="false" timed="true" delay="1500"> Arabidopsis_Leaf_ATH8bbg.png Antirrhinum flower small1.jpg Antirrhinum flower small2.jpg Antirrhinum flower small3.jpg Anthers1.jpg MacroOPTIris1.jpg </sgallery>

More on visualising 3D

Working with 3D volume images

Three dimensional (3D) volume images are key to understanding the development of shape. They are produced by CT X-ray scanners, MRI and PET. However, biological gene activity is monitored using fluorescent probes and so optical methods are used: confocal microscopy and optical projection microscopy. The resulting images are large and are best viewed using software that exploits powerful graphics processors. We implemented VolViewer which is a viewer of choice in the open microscopy environment.

Downloads and more details on VolViewer

<sgallery width="160" height="280" showarrows="false" showcarousel="false" showinfopane="false" timed="true" delay="4000"> Arabidopsis_Leaf_ATH8bbg.png </sgallery>

More on 3D measurement

Photos, Algorithms and Art

Tools and Demonstrations

About

The Bangham Lab is part of the UEA D’Arcy Thompson Centre for computational biology.