Main Page: Difference between revisions

From BanghamLab
Jump to navigation Jump to search
No edit summary
No edit summary
Line 3: Line 3:
=<span style="color: DarkGreen">Computational Biology=
=<span style="color: DarkGreen">Computational Biology=
<span style="color: DarkGreen"><font size="+1">The aim </font><span>is to understand how patterns of gene activity in biological organs influence the developing shape. </span><p></p><p></p>
<span style="color: DarkGreen"><font size="+1">The aim </font><span>is to understand how patterns of gene activity in biological organs influence the developing shape. </span><p></p><p></p>
{|  border="1" cellpadding="5" cellspacing="3"  style="background-color: #000000;"
{|  border="0" cellpadding="5" cellspacing="3"  style="background-color: #000000;"
|  <!-- column1-->
|  <!-- column1-->
<sgallery width="160" height="200" showarrows="false" showcarousel="false" showinfopane="false" timed="true" delay="2000">
<sgallery width="140" height="200" showarrows="false" showcarousel="false" showinfopane="false" timed="true" delay="2000">
LabelledCropped_GPT_Snapdragon_2010-000250-0001.png
LabelledCropped_GPT_Snapdragon_2010-000250-0001.png
LabelledCropped_GPT_Snapdragon_2010-000340-0001.png
LabelledCropped_GPT_Snapdragon_2010-000340-0001.png
Line 24: Line 24:
* <span style="color: LemonChiffon">Formalised in the Growing Polarised Tissue Framework (ref). </span>
* <span style="color: LemonChiffon">Formalised in the Growing Polarised Tissue Framework (ref). </span>
* <span style="color: LemonChiffon">Implemented in ''GFtbox'' to make it easy to develop ideas on growth and form.</span>
* <span style="color: LemonChiffon">Implemented in ''GFtbox'' to make it easy to develop ideas on growth and form.</span>
* <span style="color: LemonChiffon">Start with a sheet of tissue (the canvas), add observed, or hypothetical patterns of activity. </span>
* <span style="color: LemonChiffon">Start with a sheet of tissue (the canvas) with observed, or hypothetical patterns of growth factor activity. </span>
* <span style="color: LemonChiffon">Grow the canvas in 3D. </span>
* <span style="color: LemonChiffon">Grow the canvas in 3D under constraints of tissue continuity</span>
* <span style="color: LemonChiffon">Compare with observed data quantitatively </span><p>
* <span style="color: LemonChiffon">Compare with observed data quantitatively </span><p>
<center> [[Software#Toolboxes for research|<span style="color:GreenYellow;">Downloads and more details on ''GFtbox''</span>]] </center>
<center> [[Software#Toolboxes for research|<span style="color:GreenYellow;">Downloads and more details on ''GFtbox''</span>]] </center>
||  <!-- column3-->
||  <!-- column3-->
<sgallery width="160" height="200"  showarrows="false" showcarousel="false" showinfopane="false" timed="true" delay="3000">
<sgallery width="140" height="200"  showarrows="false" showcarousel="false" showinfopane="false" timed="true" delay="3000">
LabelledCropped GPT Snapdragon 2010-000570-0003 double.png
LabelledCropped GPT Snapdragon 2010-000570-0003 double.png
LabelledCropped GPT Snapdragon 2010-000570-0002 triple.png
LabelledCropped GPT Snapdragon 2010-000570-0002 triple.png

Revision as of 10:30, 4 May 2011

The Bangham Lab

Computational Biology

The aim is to understand how patterns of gene activity in biological organs influence the developing shape.

<sgallery width="140" height="200" showarrows="false" showcarousel="false" showinfopane="false" timed="true" delay="2000"> LabelledCropped_GPT_Snapdragon_2010-000250-0001.png LabelledCropped_GPT_Snapdragon_2010-000340-0001.png LabelledCropped_GPT_Snapdragon_2010-000490-0001.png LabelledCropped_GPT_Snapdragon_2010-000570-0002.png LabelledCropped_GPT_Snapdragon_2010-000570-0003.png LabelledCropped_GPT_Snapdragon_2010-000570-0004.png LabelledCropped_GPT_Snapdragon_2010-000570-0005.png LabelledCropped_GPT_Snapdragon_2010-000570-0007.png LabelledCropped_GPT_Snapdragon_2010-000570-0006.png LabelledCropped_GPT_Snapdragon_2010-000570-0001.png </sgallery>

More on Snapdragon model

Genes and growing shapes

  • Observed: patterns of gene activity regulate tissue growth.
  • Hypothesis: gene activity independently regulates direction of growth.
  • Formalised in the Growing Polarised Tissue Framework (ref).
  • Implemented in GFtbox to make it easy to develop ideas on growth and form.
  • Start with a sheet of tissue (the canvas) with observed, or hypothetical patterns of growth factor activity.
  • Grow the canvas in 3D under constraints of tissue continuity
  • Compare with observed data quantitatively

Downloads and more details on GFtbox

<sgallery width="140" height="200" showarrows="false" showcarousel="false" showinfopane="false" timed="true" delay="3000"> LabelledCropped GPT Snapdragon 2010-000570-0003 double.png LabelledCropped GPT Snapdragon 2010-000570-0002 triple.png LabelledCropped GPT Snapdragon 2010-000570-0001-Wildtype.png </sgallery>

More on testing models

<sgallery width="160" height="280" showarrows="false" showcarousel="false" showinfopane="false" timed="true" delay="1500"> Arabidopsis_Leaf_ATH8bbg.png Antirrhinum flower small1.jpg Antirrhinum flower small2.jpg Antirrhinum flower small3.jpg Anthers1.jpg MacroOPTIris1.jpg </sgallery>

More on visualising 3D

Working with 3D volume images

Three dimensional (3D) volume images are key to understanding the development of shape. They are produced by CT X-ray scanners, MRI and PET. However, biological gene activity is monitored using fluorescent probes and so optical methods are used: confocal microscopy and optical projection microscopy. The resulting images are large and are best viewed using software that exploits powerful graphics processors. We implemented VolViewer which is a viewer of choice in the open microscopy environment.

Downloads and more details on VolViewer

<sgallery width="160" height="280" showarrows="false" showcarousel="false" showinfopane="false" timed="true" delay="4000"> Arabidopsis_Leaf_ATH8bbg.png </sgallery>

More on 3D measurement

Photos, Algorithms and Art

Tools and Demonstrations

About

The Bangham Lab is part of the UEA D’Arcy Thompson Centre for computational biology.