Main Page: Difference between revisions

From BanghamLab
Jump to navigation Jump to search
Line 66: Line 66:
[[Image:tentacles_morphogenesis.png|600px]]
[[Image:tentacles_morphogenesis.png|600px]]
|}
|}
<br>
[[Software#Reaction-diffusion and morphogenesis|<span style="color:Green;">'''MORE'''</span>]]<br><br>
In 1952 Alan Turing proposed [http://rstb.royalsocietypublishing.org/content/237/641/37.abstract The chemical basis of Morphogenesis] - "... suggested that a system of chemical substances, called morphogens, reacting together and diffusing through a tissue, is adequate to account for the main phenomena of morphogenesis. Such a system, although it may originally be quite homogeneous, may later develop a pattern or structure due to an instability of the homogeneous equilibrium, which is triggered off by random disturbances. ..." Such patterning is now [http://en.wikipedia.org/wiki/Reaction%E2%80%93diffusion_system widely known]. However, the morphogenesis element of the story has been less widely explored - here we illustrate the process using ''GFtbox'' - but also see: [http://www.sciencedirect.com/science/article/pii/S1360138507000611 plant meristem][http://home.thep.lu.se/~henrik/mnxa09/Jonsson2012.pdf review related plant stuff]


Two chemical substances react and diffuse to dynamically develop a pattern of spots (top row). We have added two simple growth rules ([http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002071 based on our hypotheses on the growth of shapes]) to dynamically translate the pattern into a pattern of growth (bottom row). The changing geometry arising through growth which in turn feeds back on the reaction-diffusion system to modulate patterning. One of the morphogenesis rules uses the chemical concentration gradient to set the axes for anisotropic growth (arrows in third panel).
[[Software#Reaction-diffusion and morphogenesis|<span style="color:Navy;">MORE</span>]]<br><br>
 
This model was featured in a video interview exhibit in the London Science Museum 'Codebreakers' exhibition [http://www.sciencemuseum.org.uk/visitmuseum/galleries/turing.aspx Codebreakers]. <br>
[[Software#Reaction-diffusion and morphogenesis|<span style="color:Navy;">More details on reaction-diffusion and morphogenesis</span>]]<br><br>

Revision as of 13:11, 25 November 2013

Bangham at UEA

Computational biology toolboxes


Growing complex biological shapes from patterns of gene expression

LabelledCropped GPT Snapdragon 2010-000340-0001.png LabelledCropped GPT Snapdragon 2010-000490-0001.png LabelledCropped GPT Snapdragon 2010-000570-0002.png LabelledCropped GPT Snapdragon 2010-000570-0007.png LabelledCropped GPT Snapdragon 2010-000570-0003 double.png LabelledCropped GPT Snapdragon 2010-000570-0002 triple.png


MORE

Viewing three dimensional images

Cs0prxz0.png Leaf trichomes.png Cs0prxz0.png GL2 GUS.png Leaf5.png OleosinSeed.png OPT Leaf copy.png Seedling copy.png Snapdragon Peloric mutant.png Tissue.png Z9r3j2yx.png 1896 wh txr light.png Ara flower.png Arableaf ath8 OPT.png


MORE

Analysing shapes: faces, leaves and flowers

PortraitsMEANSsmaller.jpg
MORE
Seen the origional paintings? Do they exist?.

Algorithms


MSER's, extrema, Connected-set filters, Sieves and Scale-space

AAMToolbox AAMToolbox

MORE More

Reaction-diffusion and morphogenesis - the growth of shapes

Tentacles reaction diffusion.png Tentacles morphogenesis.png

MORE