Tutorial on the basic interaction function: Difference between revisions
No edit summary |
No edit summary |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
[[GFtbox_Tutorial_pages|Back to tutorial pages]] | [[GFtbox_Tutorial_pages#2 Modelling using a combination of GUI and interaction function|Back to tutorial pages]] | ||
=Creating an interaction function= | =Creating an interaction function= | ||
The goal is to re-create the model used to illustrate [[GFtbox#What does GFtbox require?|why we use matlab]]. We will create two new variables A and B - in the interaction function they are labelled'' id_a_p'' and ''id_b_p'' (why?[[Tutorial on the basic interaction function#Variables and utility functions| see below]]). The model is articulated in the following code. | The goal is to re-create the model used to illustrate [[GFtbox#What does GFtbox require?|why we use matlab]]. We will create two new variables A and B - in the interaction function they are labelled'' id_a_p'' and ''id_b_p'' (why?[[Tutorial on the basic interaction function#Variables and utility functions| see below]]). The ''x,y,z'' coordinates of mesh nodes (vertices) are stored in the Mesh data structure in a field called ''nodes''. Thus the ''x'' coordinate of node 1 is stored in ''m.nodes(1,1)'', the ''y'' coordinate in ''m.nodes(1,2)'' and ''z'' coordinate in ''m.nodes(1,3)''. | ||
The patterns of morphogens A and B are set up by <br> | |||
id_a_p(m.nodes(:,1)<-0.03)=1; | |||
id_b_p(m.nodes(:,2)<-0.01)=1; | |||
where ''id_a_p'' is the A morphogen. ''m.node(:,1)'' refers to the ''x'' coordinates of all nodes (vertices) in the mesh<br> | |||
The expression ''(m.nodes(:,1)<-0.03)'' means find all vertices with ''x'' coordinates that are less than -0.03.<br><br> | |||
Similarly, ''(m.nodes(:,2)<-0.01)'' means find all vertices with ''y'' coordinates that are less than -0.01.<br><br> | |||
The model is articulated in the following code. | |||
if (Steps(m)==0) && m.globalDynamicProps.doinit % Initialisation code. | if (Steps(m)==0) && m.globalDynamicProps.doinit % Initialisation code. | ||
Line 63: | Line 71: | ||
|width="150pt"|Steps(m)|| current step number in Mesh m | |width="150pt"|Steps(m)|| current step number in Mesh m | ||
|- | |- | ||
|width="150pt"|pro(k,id)|| promote by k in regions designated by factor, id | |width="150pt"|pro(k,id)|| promote by k in regions designated by factor, id (''pro(k,'''x''')=1+k'''x'') | ||
|- | |- | ||
|width="150pt"|inh(k,id)|| inhibit by k in regions designated by factor, id | |width="150pt"|inh(k,id)|| inhibit by k in regions designated by factor, id (''inh(k,'''x''')=1/(1+k'''x''')'') | ||
|- | |- | ||
|width="150pt"|local_setproperties( m )|| initialise Mesh properties | |width="150pt"|local_setproperties( m )|| initialise Mesh properties |
Latest revision as of 17:36, 6 June 2011
Creating an interaction function
The goal is to re-create the model used to illustrate why we use matlab. We will create two new variables A and B - in the interaction function they are labelled id_a_p and id_b_p (why? see below). The x,y,z coordinates of mesh nodes (vertices) are stored in the Mesh data structure in a field called nodes. Thus the x coordinate of node 1 is stored in m.nodes(1,1), the y coordinate in m.nodes(1,2) and z coordinate in m.nodes(1,3).
The patterns of morphogens A and B are set up by
id_a_p(m.nodes(:,1)<-0.03)=1; id_b_p(m.nodes(:,2)<-0.01)=1;
where id_a_p is the A morphogen. m.node(:,1) refers to the x coordinates of all nodes (vertices) in the mesh
The expression (m.nodes(:,1)<-0.03) means find all vertices with x coordinates that are less than -0.03.
Similarly, (m.nodes(:,2)<-0.01) means find all vertices with y coordinates that are less than -0.01.
The model is articulated in the following code.
if (Steps(m)==0) && m.globalDynamicProps.doinit % Initialisation code. id_a_p(m.nodes(:,1)<-0.03)=1; % setup region for A where identity factor A is represented by id_a_p id_b_p(m.nodes(:,2)<-0.01)=1; % setup region for B else % @@KRN Growth Regulatory Network kapar_p(:) = id_a_l .* inh(1,id_b_l); % growth rate kaper_p(:) = kapar_p; % isotropic growth kbpar_p(:) = kapar_p; % same on both sides of the sheet kbper_p(:) = kapar_p; % same knor_p(:) = 0; % thickness not growing end
Creating the interaction function from the GUI
Variables and utility functions
Variables that need to be seen in the GUI (morphogens, growth factors, signals, etc.) are always set up (declared) from the GUI using Morphogen Panel. We have evolved a naming convention
prefixes |
| ||||||||
suffixes | _p, _l, _a, _i |
Full details of types of morphogens and factors
Pre-defined variables |
| ||||||||||
Pre-defined functions |
|
The interaction function in more detail
A large number of comments have been deleted to allow us to focus on the essential components. (What are these deleted comments? They provide hints and clues on how to program a model - many people use the system and we found the easiest way for people to remember how to program models is to provide comments in the appropriate place - which can be deleted when not needed. Ok so you want see an uncensored version, here is a full freshly minted interaction function. It is discussed in more detail here.)
This part is generated automatically from the GUI
The name matches the project name (the project name is forced into lowercase), GFtbox revision number refers to our source code control, lines starting with % are comments function m = gpt_why_matlab_2011_05_05( m ) %m = gpt_why_matlab_2011_05_05( m ) % Morphogen interaction function. % Written at 2011-05-28 08:08:11. % GFtbox revision 3544, 2011-05-25 13:37:23.907904. % The user may edit any part of this function between delimiters % of the form "USER CODE..." and "END OF USER CODE...". The % delimiters themselves must not be moved, edited, deleted, or added. if isempty(m), return; end fprintf( 1, '%s found in %s\n', mfilename(), which(mfilename()) ); try m = local_setproperties( m ); catch end realtime = m.globalDynamicProps.currenttime; %%% USER CODE: INITIALISATION Section 2 This part could contain user code but in this case there is nothing we need to do before the system extracts information from the Mesh data structure %%% END OF USER CODE: INITIALISATION Section 3 This part is generated automatically from the GUI Variables are extracted from Mesh and the mesh itself is summarised in a set of comments %%% SECTION 1: ACCESSING MORPHOGENS AND TIME. %%% AUTOMATICALLY GENERATED CODE: DO NOT EDIT. if isempty(m), return; end setGlobals(); global gNEW_KA_PAR gNEW_KA_PER gNEW_KB_PAR gNEW_KB_PER global gNEW_K_NOR gNEW_POLARISER gNEW_STRAINRET gNEW_ARREST dt = m.globalProps.timestep; polariser_i = gNEW_POLARISER; P = m.morphogens(:,polariser_i); [kapar_i,kapar_p,kapar_a,kapar_l] = getMgenLevels( m, 'KAPAR' ); [kaper_i,kaper_p,kaper_a,kaper_l] = getMgenLevels( m, 'KAPER' ); [kbpar_i,kbpar_p,kbpar_a,kbpar_l] = getMgenLevels( m, 'KBPAR' ); [kbper_i,kbper_p,kbper_a,kbper_l] = getMgenLevels( m, 'KBPER' ); [knor_i,knor_p,knor_a,knor_l] = getMgenLevels( m, 'KNOR' ); [strainret_i,strainret_p,strainret_a,strainret_l] = getMgenLevels( m, 'STRAINRET' ); [arrest_i,arrest_p,arrest_a,arrest_l] = getMgenLevels( m, 'ARREST' ); [id_a_i,id_a_p,id_a_a,id_a_l] = getMgenLevels( m, 'ID_A' ); [id_b_i,id_b_p,id_b_a,id_b_l] = getMgenLevels( m, 'ID_B' ); % Mesh type: circle % centre: 0 % circumpts: 48 % coneangle: 0 % dealign: 0 % height: 0 % innerpts: 0 % randomness: 0.1 % rings: 6 % version: 1 % xwidth: 0.2 % ywidth: 0.2 % Morphogen Diffusion Decay Dilution Mutant % ------------------------------------------------- % KAPAR ---- ---- ---- ---- % KAPER ---- ---- ---- ---- % KBPAR ---- ---- ---- ---- % KBPER ---- ---- ---- ---- % KNOR ---- ---- ---- ---- % POLARISER ---- ---- ---- ---- % STRAINRET ---- ---- ---- ---- % ARREST ---- ---- ---- ---- % ID_A ---- ---- ---- ---- % ID_B ---- ---- ---- ---- Section 4 This part contains user code that articulates the model %%% USER CODE: MORPHOGEN INTERACTIONS if (Steps(m)==0) && m.globalDynamicProps.doinit % Initialisation code. id_a_p(m.nodes(:,1)<-0.03)=1; % setup region for A id_b_p(m.nodes(:,2)<-0.01)=1; % setup region for B else % @@KRN Growth Regulatory Network kapar_p(:) = id_a_l .* inh(1,id_b_l); % growth rate kaper_p(:) = kapar_p; % isotropic growth kbpar_p(:) = kapar_p; % same on both sides of the sheet kbper_p(:) = kapar_p; % same knor_p(:) = 0; % thickness not growing end Section 5 This part is generated automatically from the GUI Variables are put back into the data structure (Mesh). Note: only variables with the _p suffix (promotors) are stored (levels _l can be computed on the fly and activities _a are generally set in the GUI - they can only be changed in the interaction function by altering the data structure itself. %%% END OF USER CODE: MORPHOGEN INTERACTIONS %%% SECTION 6: INSTALLING MODIFIED VALUES BACK INTO MESH STRUCTURE %%% AUTOMATICALLY GENERATED CODE: DO NOT EDIT. m.morphogens(:,polariser_i) = P; m.morphogens(:,kapar_i) = kapar_p; m.morphogens(:,kaper_i) = kaper_p; m.morphogens(:,kbpar_i) = kbpar_p; m.morphogens(:,kbper_i) = kbper_p; m.morphogens(:,knor_i) = knor_p; m.morphogens(:,strainret_i) = strainret_p; m.morphogens(:,arrest_i) = arrest_p; m.morphogens(:,id_a_i) = id_a_p; m.morphogens(:,id_b_i) = id_b_p; %%% USER CODE: FINALISATION %%% END OF USER CODE: FINALISATION end %%% USER CODE: SUBFUNCTIONS Section 5 function m = local_setproperties( m ) end