One dimensional sieve introduction: Difference between revisions
		
		
		
		Jump to navigation
		Jump to search
		
| Line 26: | Line 26: | ||
  Y=conv(X,(h(5,:)/sum(h(5,:))),'same');  |   Y=conv(X,(h(5,:)/sum(h(5,:))),'same');  | ||
====Non-linear: the starting point for MSER's====  | ====<span style="color:SaddleBrown">Non-linear: the starting point for MSER's</span>====  | ||
{| border="0" cellpadding="5" cellspacing="5"  | {| border="0" cellpadding="5" cellspacing="5"  | ||
|- valign="top"  | |- valign="top"  | ||
Revision as of 11:05, 15 November 2013
1D Signals to MSERs and granules
Matlab function IllustrateSIV_1 illustrates how MSERs (maximally stable extremal regions) and sieves are related. We start with one dimensional signals before moving to two dimensional images and three dimensional volumes.
Consider a signal, <math>X</math>X=getData('PULSES3WIDE')
>blue  X=0 5 5 0 0 1 1 4 3 3 2 2 1 2 2 2 1 0 0 0 1 1 0 3 2 0 0 0 6 0 0
 | 
Filter
Linear
| A linear Gaussian filter with <math>\sigma=2</math> attenuates extrema without introducing new ones. But blurring may be a problem. |  
 | 
h=fspecial('Gaussian',9,2);
Y=conv(X,(h(5,:)/sum(h(5,:))),'same');
Non-linear: the starting point for MSER's
scaleA=1; Y1=SIVND_m(X,scaleA,'o');
scaleB=2; Y2=SIVND_m(X,scaleB,'o');
red=double(X)-double(Y1); green=double(Y1)-double(Y2);




