Difference between revisions of "Main Page"

From BanghamLab
Jump to navigation Jump to search
 
(103 intermediate revisions by 3 users not shown)
Line 1: Line 1:
__NOTOC__
 
=Bangham Lab - Home=
 
  
<span style="color: DarkGreen">'''Current activity: a collaboration''' with the [http://rico-coen.jic.ac.uk/index.php/Main_Page CoenLab] with the aim of understanding how patterns of gene activity in biological organs influence the developing shape. The BanghamLab is focussed on the conceptual underpinning: concepts captured in computational growth models, experimental data visualisation and analysis.</span>
+
 
=<span style="color:DarkGreen;">Computational biology toolboxes=
+
=<span style="color:DarkGreen;">Computational biology</span>=
==<span style="color:DarkGreen;">GFtbox==
+
 
{| border="0" cellpadding="5" cellspacing="5"
+
----
|- valign="top"
+
 
|width="10%"| <imgicon>GPT_thumbnail2.png|120px|GFtbox</imgicon>
+
==<span style="color:DarkGreen;">[[Software#Quantitative understanding of growing shapes: GFtbox|<span style="color:Green;"> '''Growing''']] complex biological shapes from patterns of gene expression</span>==
|width="40%"|
+
{| border="0" width=100% style="background-color:#000000;"
For modelling the growth of shapes. <br><br>
+
|-
[[GFtbox|'''''Details''''': what? How? Where?]]<br><br>
+
|align="center"|  
[[GFtbox Tutorial pages|'''''Tutorials''''': from the beginning]]<br><br>
+
[[Image:LabelledCropped GPT Snapdragon 2010-000340-0001.png|120px]]
[[GFtbox Workshop pages|'''''Workshop''''']]<br><br>
+
[[Image:LabelledCropped GPT Snapdragon 2010-000490-0001.png|120px]]
[[GFtbox Example pages|'''''Examples''''': from publications]]<br><br>
+
[[Image:LabelledCropped GPT Snapdragon 2010-000570-0002.png|120px]]
[https://sourceforge.net/p/gftbox/ '''''Download''''' from SourceForge]<br><br>
+
[[Image:LabelledCropped GPT Snapdragon 2010-000570-0007.png|120px]]
[[Ready Reference Manual|'''''Ready Reference''''' Manual]]<br><br>
+
[[Image:LabelledCropped GPT Snapdragon 2010-000570-0003 double.png|100px]]
(PC, Mac, Linux, uses Matlab<br>no Mathworks toolboxes needed<br>[http://www.mathworks.com/products/matlab/tryit.html Matlab 30 day free trial] and <br>[http://www.mathworks.com/academia/student_version/?s_cid=global_nav student edition])<br><br>
+
[[Image:LabelledCropped GPT Snapdragon 2010-000570-0002 triple.png|120px]]
Comment on results. [http://www.the-scientist.com/2011/4/1/18/1/ R. Grant (2011) 'Taking ShapeTheScientist, 25:18]
+
|}
|width="50%"| ''GFtbox'' is an implementation of the Growing Polarised Tissue Framework for understanding and modelling the relationship between gene activity and the growth of shapes such leaves, flowers and animal embryos.
+
<br>
A paper describing the method and the software has appeared in [http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002071 PLoS Computational Biology]. <br><br>The GPT-framework was used to capture an understanding of (to model) the [http://www.plosbiology.org/article/info%3Adoi%2F10.1371%2Fjournal.pbio.1000537 growing Snapdragon flower]. The Snapdragon model was validated by [http://www.plosbiology.org/article/info%3Adoi%2F10.1371%2Fjournal.pbio.1000538 comparing the results with other mutant and transgenic flowers.]<br><br>The icon shows an asymmetrical outgrowth. Conceptually, it is specifed by two independent patterns under genetic control: a pattern of growth and a pattern of organisers. The outgrowth arises from a region of extra overall growth. Growth is aligned along axes set by two interacting systems. Organisers at the ends of the mesh create a lengthwise gradient. This gradient interacts with the second due to an organiser that generates polariser in a region that becomes the tip of the outgrowth.  
+
[[Software#Quantitative understanding of growing shapes: GFtbox|<span style="color:Green;">'''MORE'''</span>]]<br>
 +
 
 +
==<span style="color:DarkGreen;">[[Software#Viewing and measuring volume images: VolViewer|<span style="color:Green;"> '''Viewing''']] three dimensional volume (microscopy) images==
 +
{| border="0" width=100% style="background-color:#000000;"
 +
|-
 +
|align="center"|
 +
[[Image:Cs0prxz0.png|32x32px]]
 +
[[Image:Leaf_trichomes.png|50px]]
 +
[[Image:Cs0prxz0.png|50px]]
 +
[[Image:GL2_GUS.png|50px]]
 +
[[Image:Leaf5.png|50px]]
 +
[[Image:OleosinSeed.png|50px]]
 +
[[Image:OPT_Leaf_copy.png|50px]]
 +
[[Image:Seedling_copy.png|50px]]
 +
[[Image:Snapdragon_Peloric_mutant.png|50px]]
 +
[[Image:Tissue.png|50px]]
 +
[[Image:Z9r3j2yx.png|50px]]
 +
[[Image:1896_wh_txr_light.png|50px]]
 +
[[Image:Ara_flower.png|50px]]
 +
[[Image:Arableaf_ath8_OPT.png|50px]]
 +
|}
 +
<br>
 +
[[Software#Viewing and measuring volume images: VolViewer|<span style="color:Green;">'''MORE'''</span>]]
 +
 
 +
==[[Software#Analysing shapes in 2D and 3D: AAMToolbox|<span style="color:Green;">'''Analysing'''</span>]] shapes: faces, leaves and flowers==
 +
{| border="0" width=100% style="background-color:#000000;"
 +
|-
 +
[[Image:PortraitsMEANSsmaller.jpg|800px]]
 +
|-}
 +
<br>
 +
[[Software#Analysing shapes in 2D and 3D: AAMToolbox|<span style="color:Green;">'''MORE'''</span>]]<br>
 +
Have you seen the original paintings?  Do they exist?. <br><br>
 +
 
 +
=<span style="color:Navy;">Algorithms=
 +
 
 +
----
 +
==[http://cmpdartsvr3.cmp.uea.ac.uk/wiki/BanghamLab/index.php/Software#MSERs.2C_extrema.2C_connected-set_filters_and_sieves <span style="color:Navy;">'''Vision''':] MSER's, extrema, filter-banks, Sieves and '''Scale-space'''==
 +
{| border="0" width=100% style="background-color:#ffffff;"
 +
  |-
 +
|align="center"|
 +
[[Image:Cameraman_iso_topview.jpg|300px|AAMToolbox]]
 +
[[Image:Cameraman_iso_tree.jpg|300px|AAMToolbox]]
 +
|}
 +
 
 +
[[Software#MSERs.2C_extrema.2C_connected-set_filters_and_sieves|<span style="color:Navy;">'''MORE'''</span>]]
 +
 
 +
==[http://cmpdartsvr3.cmp.uea.ac.uk/wiki/BanghamLab/index.php/Software#Art.2C_extrema_of_light_and_shade:_PhotoArtMaster <span style="color:Navy;">'''Applications'''</span>]' <span style="color:Navy;">of non-linear filter banks (sieves) and the art of light and shade</span>==
 +
{| border="0" width=100% style="background-color:#ffffff;"
 +
|-
 +
|align="center"|
 +
[[Image:Colour_sieve.jpg|600px|AAMToolbox]]
 
|}
 
|}
==<span style="color:DarkGreen;">VolViewer==
+
These images were produced from photographs using '''ArtMaster''' (formally known as '''PhotoArtMaster'''). The software received many favourable reviews when it was released (e.g. [http://graphicssoft.about.com/cs/photoart/gr/photoartmasterg.htm  "This software can give you a lot of satisfaction from your everyday photos"], [http://graphicssoft.about.com/library/products/aafpr_photoartmaster1.htm]
{| border="0" cellpadding="5" cellspacing="5"
+
 
|- valign="top"
+
[http://cmpdartsvr3.cmp.uea.ac.uk/wiki/BanghamLab/index.php/Software#The_final_version_of_the_Windows_ArtMaster2.0_is_downloadable_here_with_no_support The final (so far unpublished) version of ArtMaster including code is downloadable from here.] I cannot provide support but quite of lot of documentation is available within  [http://cmpdartsvr1.cmp.uea.ac.uk/downloads/software/SieveWebPages/a4a_2_screensize.pdf <span style="color: Chocolate">''''this document''''' </span>]
|width="10%"| <imgicon>VolViewer-logo.png|120px|VolViewer</imgicon>
+
 
|width="40%"|For viewing and measuring biological images. <br><br>[[VolViewer|''Details'']]<br><br>
+
[http://cmpdartsvr3.cmp.uea.ac.uk/wiki/BanghamLab/index.php/Software#Art.2C_extrema_of_light_and_shade:_PhotoArtMaster <span style="color:Navy;">'''MORE'''</span>]
(Windows, Mac, Linux)
+
 
|width="50%"|  VolViewer uses [http://www.opengl.org/ OpenGL] and [http://qt.nokia.com/products/ Qt] to provide a user friendly application to interactively explore and quantify multi-dimensional biological images. It has been successfully used in our lab to explore and quantify confocal microscopy and  optical projection tomography images. It is open-source and is also compatible with the Open Microscopy Environment ([http://openmicroscopy.org/site OME]).
+
==[[Software#Reaction-diffusion and morphogenesis| <span style="color:Navy;"> '''Reaction-diffusion'''</span>]] <span style="color:Navy;">and morphogenesis - the growth of shapes==
 +
{| border="0" width=100% style="background-color:#000000;"
 +
|-
 +
|align="center"|
 +
[[Image:tentacles_reaction_diffusion.png|400px]]
 +
[[Image:tentacles_morphogenesis.png|600px]]
 
|}
 
|}
 +
This image forms part of a 'journey' in the Science Museum of London's 'Journeys of Invention' [http://www.sciencemuseum.org.uk/journeys iPad app.]<br><br>
 +
[[Software#Reaction-diffusion and morphogenesis|<span style="color:Navy;">'''MORE'''</span>]]<br><br>
 +
 +
=[[Andrew personal |  Andrew outside activities]]<br>

Latest revision as of 12:03, 27 October 2014


Computational biology


Growing complex biological shapes from patterns of gene expression

LabelledCropped GPT Snapdragon 2010-000340-0001.png LabelledCropped GPT Snapdragon 2010-000490-0001.png LabelledCropped GPT Snapdragon 2010-000570-0002.png LabelledCropped GPT Snapdragon 2010-000570-0007.png LabelledCropped GPT Snapdragon 2010-000570-0003 double.png LabelledCropped GPT Snapdragon 2010-000570-0002 triple.png


MORE

Viewing three dimensional volume (microscopy) images

Cs0prxz0.png Leaf trichomes.png Cs0prxz0.png GL2 GUS.png Leaf5.png OleosinSeed.png OPT Leaf copy.png Seedling copy.png Snapdragon Peloric mutant.png Tissue.png Z9r3j2yx.png 1896 wh txr light.png Ara flower.png Arableaf ath8 OPT.png


MORE

Analysing shapes: faces, leaves and flowers

PortraitsMEANSsmaller.jpg
MORE
Have you seen the original paintings? Do they exist?.

Algorithms


Vision: MSER's, extrema, filter-banks, Sieves and Scale-space

AAMToolbox AAMToolbox

MORE

Applications' of non-linear filter banks (sieves) and the art of light and shade

AAMToolbox

These images were produced from photographs using ArtMaster (formally known as PhotoArtMaster). The software received many favourable reviews when it was released (e.g. "This software can give you a lot of satisfaction from your everyday photos", [1]

The final (so far unpublished) version of ArtMaster including code is downloadable from here. I cannot provide support but quite of lot of documentation is available within 'this document

MORE

Reaction-diffusion and morphogenesis - the growth of shapes

Tentacles reaction diffusion.png Tentacles morphogenesis.png

This image forms part of a 'journey' in the Science Museum of London's 'Journeys of Invention' iPad app.

MORE

= Andrew outside activities